論文 有機繊維及び鋼繊維補強コンクリートの高速衝撃による動的破壊特性

金 弘燮^{*1}·金 圭庸^{*2}·田 重圭^{*3}·金 東柱^{*4}

要旨:飛翔体の高速衝撃を受けるコンクリートの破壊性状の解明の為には,載荷速度によるひずみ速度,動 的強度増加率の評価が必要である。特に,繊維補強コンクリートの場合は,動力学的特性と高速衝撃破壊挙 動において繊維種類と性状が及ぼす影響が重要である。本研究では有機繊維及び鋼繊維補強コンクリートに 急速載荷試験と高速衝撃試験を行い,ひずみ速度によるコンクリートの動的破壊挙動を検討した。ひずみ速 度が増加するほど動的曲げと引張強度が大きくなり,有機繊維補強コンクリートは鋼繊維補強コンクリート より繊維混入本数が多いため,動的強度増加率と耐衝撃性能が向上することが分かった。 キーワード:繊維補強コンクリート,急速載荷試験,高速衝撃試験,動的強度増加率,ひずみ速度

1. はじめに

飛翔体の高速衝撃を受けるコンクリートは貫通,表面 貫入,衝撃波によるひび割れの拡散と裏面剥離などの局 部損傷が発生する。このようなコンクリートの破壊挙動 に及ぼす影響要因は飛翔体の材料的特性,衝突速度,質 量及び幾何学的構造とコンクリートの材料的特性,試験 体の寸法と厚さ,補強材料及び方法などがある。

荷重条件とひずみ速度の関係は図-1のようにクリー プ,静的荷重,地震,衝撃及び爆発など荷重条件によっ てひずみ速度は非常に異なっている。従って,高速衝撃 に対する破壊特性を解明するためには,ひずみ速度を十 分に考慮することが重要である¹⁾⁻³⁾。

一方,高速衝撃荷重に対するコンクリート系材料の耐 衝撃性能を高めるためには、曲げと引張強度、破壊エネ ルギーの増加が必要となる。そこで、繊維補強コンクリ ートの力学特性及び耐衝撃性能に関する研究が注目さ れている。著者ら⁴は、有機繊維としてポリアミド繊維 補強コンクリート及び鋼繊維補強コンクリートにおい て同じ体積の繊維混入率の場合は、ポリアミド繊維の方 が静的曲げ・引張性能は低下したが、混入繊維の本数が 多いため、耐衝撃性能におけるコンクリートの裏面剥離 抑制については効果があると報告した。しかしながら、 ポリアミド繊維補強コンクリートの動的破壊特性につ いてはまだ明らかになっていない。

クリ	ープ	i	静的]	地》	震		循	訂撃	□ [□]	発
			静的	曲げと	:引張	急	速曲け	急速	引張	高速飛	翔体衝撃
本研3 し	究の試	験範囲	→ 	•				1			
10-8	10-7	10-6	10-5	10-4	10-3	10-2	10-1	1	10	10^{2}	10^{3}
				ひず。	み速度	更(se	c ⁻¹)				

図-1 荷重条件とひずみ速度の関係

そこで本研究では、コンクリートの繊維補強材として 有機繊維であるポリアミド繊維及び鋼繊維を混入した コンクリートに対してひずみ速度を考慮した曲げ試験 と引張試験を行い、動的強度増加率と動的強度点でのひ ずみを求めた。また、高速飛翔体の衝撃による表面と裏 面のひずみ及び裏面剥離深さを測定し、繊維補強による 耐衝撃性能の向上効果及び動的破壊特性を検討した。

2. 実験計画及び方法

2.1 コンクリートの調合及び使用材料

表-1 に本研究のコンクリートの調合を示した。ポリ アミド繊維とフック型鋼繊維を用いて、ポリアミド繊維 の場合は繊維混入率 1.00, 1.25 及び 1.50vol.%, フック型 鋼繊維の場合は繊維混入率 0.50, 0.75 及び 1.00vol.%とし、 また,設計圧縮強度は 40MPa, 水結合材比は 0.4 とした。 一方, スランプや空気量の目標値のためにコンクリート の調合は混入繊維の種類及び混入率によって設定した。

表-2 と表-3 に使用材料の種類及び物理的性質と補 強繊維の外観及び物性を示した。ポリアミド繊維は直径 19.5 µmの微細繊維を 544 本の単体に集積し空気噴射成形 して繊維の付着比表面積を大きくしたものである。また, 表-4 に体積 1m³のコンクリートにポリアミド繊維とフ ック型鋼繊維を体積比 1.0vol.%で混入した場合の混入質 量,本数及び比表面積を示した。ポリアミド繊維は鋼繊 維より密度が小さく,同じ体積混入率で繊維の本数と比 表面積が約 3.65 倍になる。

2.2 試験方法及び方法

(1) 静的載荷試験

写真-1(a), (b), (c)に静的曲げ試験,破壊エネルギーと 静的引張試験方法を示した。曲げ試験は100×100×400mm

*1 大韓民国 忠南大学校 大学院 建築工学科 博士課程 (正会員) *2 大韓民国 忠南大学校 建築工学科 教授 工博 (正会員) *3 大韓民国 (株)KOLON グロバル R&BD センター 責任研究員 工博 (正会員) *4 大韓民国 世宗大学校 建設環境工学科 教授 工博 (正会員)

表-1 コンクリートの調合

区公	繊維種類	$V_{\rm f}$	Fc	W/B (%)	Slump (mm)	Air (%)	S/a (%)	単位量 (kg/m³)				
区刀		(vol.%)	(MPa)					W	С	FA	S	G
Plain	繊維なし	-					44.4	163	326	82	749	938
PA 1.00		1.00	40	40 40	150 ± 30	3.5 ± 0.5	55.0	188	376	94	865	733
PA 1.25	ボリアミド 繊維	1.25					55.0	220	440	110	797	652
PA 1.50	和这小庄	1.50										
SF 0.50	フック型 鋼繊維	0.50					44.4	163	326	82	749	938
SF 0.75		0.75										
SF 1.00	平时 村 以下庄	1.00										

表-2 使用材料の種類と物理的性質

種類	物理的性質
セメント(C)	普通ポルトランドセメント 密度:3.15g/cm ³ , 粉末度:3,200cm ² /g
フライアッシュ(FA)	密度:2.20g/cm ³ , 粉末度:3,000cm ² /g
細骨材(S)	(海砂)密度:2.61g/cm3, 吸水率:0.81%
粗骨材(G)	(砕石) 最大寸法:20mm 密度:2.63g/cm ³ , 吸水率:0.76%

表-3 補強繊維の外観及び物性

区分	ポリアミド繊維(PA)	フック型鋼繊維(SF)
繊維性状		
	Imm	Imm
物理的 性質	直径:0.5mm, 長さ:30mm 引張強度:594MPa 密度:1.14g/cm ³	直径:0.5mm, 長さ:30mm 引張強度:1,140MPa 密度:7.8g/cm ³

表-4 繊維種類による混入状況の比較

繊維 種類	混入率 (vol.%)	混入質量 (kg)	本数 (個)	比表面積 (mm ²)
PA	1.0	11.40	5,700,000	545,889,000
SF	1.0	78.00	1,560,000	149,701,200

の角形試験体を用いて, KS F 2408「コンクリート曲げ 強度試験方法」に準じて4点曲げ試験を行なった。また, 破壊エネルギー試験は RILEM 50-FMC Draft Recommen -dation 方法に準じて 100×100×400mm の角形試験体の中 央部に 50mm 幅のノッチを入れ,3 点曲げ試験を行い, 荷重-ひび割れ開口部の変位(CMOD)曲線によって求め た。引張試験はダンベル型試験体を用いて、直接一軸引 張試験を行った。

(2) 急速載荷試験

写真-1(d)に最大載荷荷重 500 トンの急速載荷試験方 法を示した。本研究では急速載荷試験装置に曲げジグを

(a)静的曲げ試験

は 験体ジ

(c) 静的引張試驗²⁾

(d) 500 トン急速載荷試験

写真-1 各種力学特性の試験方法

図-2 ガス圧力式飛翔体発射装置の概要

設置して、400トンの圧力に対する4点曲げ載荷試験を 行った。載荷速度はレーザー式変位センサーで測定し, 時間-変位関係曲線の傾きを計算した。写真-1(e)に変

(a) ポリアミド繊維

(b) 鋼繊維

図-4 破壊断面での繊維分散性状

形エネルギーフレームを用いた急速引張試験を示した²⁾。 (3) 高速飛翔体の衝突による耐衝撃性能試験

図-2 にガス圧力式飛翔体発射装置の概要を示した。 本研究では直径 10mm, 質量 4.07gの鋼球を用いて約 350 m/sec.の速度で衝撃試験を行った。

(4) 試験体の作製

曲げ試験用試験体の寸法は 100×100×400mm, 高速衝撃 試験用試験体は 200×200×30mm の角型で作製した。本研 究の高速衝撃試験に用いた試験体の寸法と厚さは, 高速 衝撃試験装置の性能を考慮して設計した。また, 引張試 験用試験体はダンベル型に, 応力とひずみの測定部分は 断面 25×50mm, 長さ 100mm である。引張試験体のモルタ ル調合はコンクリートの調合で粗骨材を除いて用いた。 全ての試験体は打設後 1 日で脱型して水中養生を 27 日 間行った。また,各評価条件における試験体は3個を作 製して評価を行っており,材齢28日での圧縮強度は, 設計圧縮強度40MPaを満たします。

3. 実験結果及び考察

3.1 急速試験による動的破壊特性

曲げ載荷試験によるひずみ速度は試験体中央の下部 にひずみゲージを付着して測定した。載荷速度 0.75mm/ min.の静的曲げ試験でひずみ速度は約 3.9×10⁻⁶s⁻¹である。

図-3 にひずみ速度による曲げ応力-変位関係を示した。鋼繊維補強コンクリートがポリアミド繊維補強コン クリートより曲げ強度が大きく,最大応力以後の応力低下の傾きが緩やかに現れた。一方,ポリアミド繊維補強 コンクリートの場合,初期のひび割れが発生した後,応

力が急に低下する区間が発生した。

急速載荷試験によるひずみ速度は 0.012~0.038s⁻¹ で静 的試験よりひずみ速度が早いために動的曲げ強度が大 きくなると判断される。

図-4 に破壊断面での繊維分散性状を示す。ポリアミ ド繊維の場合,均一に分散されていて,繊維にモルタ ルが多く付着することを確かめた。一方,フック型鋼繊 維の場合は集中していることが見られ,分散性の程度が 良くなかった。また,フック型鋼繊維はマトリックスか ら引抜されることを確かめた。

図-5 にひずみ速度による引張応力-ひずみ関係を示 した。静的引張試験の載荷速度は1mm/min.とし,ひずみ 速度は1.67×10⁻⁴s⁻¹で,急速引張試験のひずみ速度は10 ~40s⁻¹である。ひずみ速度の増加によって,動的引張強 度と最大応力でのひずみが大きくなった。また,静的及 び動的強度と動的強度増加率を示した表-5 によると急 速曲げ試験の場合,動的強度増加率が1.1~1.29の範囲で, ひずみ速度による曲げ強度増加率は大きくなかった。一 方,急速引張試験はひずみ速度が速いため,動的強度増 加率が3.38~4.25 と大きくなった。

ポリアミド繊維は鋼繊維に比べて静的及び動的強度

		曲げ試験	I	引張試験			
区分	強度((MPa)	DIF*	強度	DIF		
	静的	動的	DII	静的	動的	DI	
Plain	6.42	7.91	1.23	-	-	-	
PA 1.00	8.41	9.49	1.13	2.19	9.06	4.14	
PA 1.25	8.64	10.77	1.25	2.48	10.53	4.25	
PA 1.50	8.85	11.41	1.29	2.63	10.41	3.96	
SF 0.50	8.45	9.63	1.14	-	-	-	
SF 0.75	10.22	11.21	1.10	-	-	-	
SF 1.00	11.52	12.81	1.11	5.99	20.22	3.38	

表-5 静的と動的曲げ強度及びエネルギー吸収能力

*DIF:動的強度增加率(Dynamic Increase Factor)

は小さくなったが,動的強度増加率はやや大きくなった。 このように速いひずみ速度の動的荷重ではポリアミド 繊維の多い繊維混入本数の影響で,応力の分配とひび割 れが抑制されることと考えられる。

3.2 高速衝撃試験による動的破壊特性

高速衝撃によるひずみはひずみゲージを試験体の表面と裏面に中央から直交する二方向に2枚付着して測定した。高速衝撃によるひずみ速度は27.84~120.76s⁻¹である。図-6に高速衝撃による破壊性状と表面及び裏面の

ひずみー時間関係を示した。プレインコンクリートの場 合, 裏面に大きいひずみと共に裏面剥離が発生しひずみ ゲージが破断された。一方,繊維補強コンクリートは裏 面剥離とひずみが大きく抑制されることが認めた。ポリ アミド繊維混入率 1.0vol.%は裏面ひび割れによりひずみ ゲージが破断したが、剥離は抑制さ れた。また、ポリアミド繊維混入率 1.5vol.%とフック型鋼繊維混入率 1.0vol.%ではひずみゲージの破断が なく、裏面のひずみが大きく抑制さ れた。このように繊維補強により衝 撃波の伝達とひび割れによる裏面剥 離が抑制されるため、耐衝撃性能が 向上されると考えられる。

写真-2 に高速衝撃による試験体 の裏面と断面破壊性状を示す。衝撃 波により表面からひび割れが進展し て,このひび割れにより裏面の剥離 が発生すると判断される。また,補 強繊維の架橋作用により裏面剥離が 抑制されると思われる。

静的曲げ強度及び破壊エネルギー と裏面剥離厚さの関係を図-7 に示 す。同じ種類の繊維を混入した場合, 繊維混入率が増加するほど曲げ強度 と破壊エネルギーが向上することか ら,裏面剥離厚さが小さくなったと 考えられる。また,同じ繊維混入率 については,ポリアミド繊維補強コ ンクリートが鋼繊維補強コンクリー トより曲げ強度や破壊エネルギーが 小さかったが,裏面剥離抑制効果が 大きいことが分かった。

一方,図-8にひずみ速度による動 的強度増加率を示した。ポリアミド 繊維補強コンクリートはひずみ速度 が増加するほど,鋼繊維補強コンク リートより動的強度増加率が大きく なることが分かった。なお,本研究 で用いた繊維種類によらずコンクリ ートの動的強度増加率が増加するほ ど,裏面剥離が抑制されることが認 められた。従って,高速衝撃による 繊維補強コンクリートの破壊挙動の 把握の為には,ひずみ速度を考慮し た各種力学特性において,静的破壊 特性と共に動的破壊特性の検討が必

4. まとめ

要となる。

有機繊維及び鋼繊維補強コンクリートの動的破壊特 性について評価した結果は以下の通りである。

写真-2 高速衝撃による試験体の裏面と断面破壊性状

- (1) 急速載荷試験においてひずみ速度の増加によって動 的強度増加率と最大動的引張強度点でのひずみが大 きくなり、動力学的性能が向上されることを確かめ た。
- (2) 高速衝撃による裏面ひずみと剥離性状において、繊 維補強により裏面破壊は抑制されており、同じ混入 率で繊維混入本数が多いポリアミド繊維補強コンク リートが鋼繊維補強コンクリートより裏面剥離の抑 制性能が向上した。
- (3) コンクリートの動的破壊特性を解明の為には、補強 繊維の種類と性状などの材料的要因を考慮した静・ 動力学的特性及び高速衝撃による破壊特性を検討す る必要があると考えられる。

謝辞

本研究は国土交通省建設技術研究事業(防護・防爆用高 性能繊維補強セメント複合材料及び性能評価技術開発) の研究費支援によって遂行されました。ここに感謝の意 を表します。また,防衛大学の別府万寿博先生のご指導 に感謝いたします。

参考文献

- 1) P. H. Bischoff, S. H. Perry : Compressive behavior of concrete at high strain rate, Materials and Structures, Vol.24, pp425-450, 1991
- 2) Tuan Kiet Tran, Dong Joo Kim : High strain rate effects on direct tensile behavior of high performance fiber reinforced cementitious composites, Cement and Concrete Composite, Vol.45, No.1, pp186-200, 2013. 10
- 3) 江田 智, 別府万寿博, 大野友則, 佐藤紘志: 異な る急速引張試験法によるコンクリートの動的引張 強度特性の評価, 土木学会 構造工学論文集, Vol. 50A, pp1305-1315, 2004.03
- 4) 南正樹,田重圭,金圭庸,金武漢:高速飛翔体の衝 突に対する各種コンクリートの耐衝撃性能評価、日 本コンクリート工学年次論文集, Vol.35, pp1255-1260, 2013.07
- 5) 別府万寿博, 三輪幸治, 大野友則, 塩見昌紀: 鋼製 剛飛翔体の高速衝突を受けるコンクリート板の局 部破壊に関する実験的研究, 土木学会論文集, Vol.63, No.1, pp178-191, 2007.03