事前載荷を考慮した普通、軽量粗骨材コンクリートの高温力学特性モデル式の提案

骨材種類	骨材密度	熱膨張ひずみ
高温力学特性	全ひずみ	残存圧縮強度

1. はじめに

コンクリート体積の約 70%を占める粗骨材は,火災時 のコンクリート構造物の安定性に大きい影響を及ぼすた め,粗骨材の性状はコンクリートの高温力学特性におい て重要である¹⁾。

しかし,実構造物が受ける荷重条件を考慮したコンク リートの高温力学特性における粗骨材の影響については 幾つかの研究が進んでいるがまだ明確ではない。そこで、 本研究では粗骨材種類と載荷条件がコンクリートの高温 力学特性に及ぼす影響を検討し、コンクリートの高温圧 縮強度及び熱ひずみについてモデル式を提案した。

2. 実験概要

W/B

(%)

35

ID.

NWC

 F_{cu}

(MPa)

68

Air

(%)

4

+

2.1 実験計画及びコンクリートの調合

表-1 及び表-2 に実験計画とコンクリートの調合を示す。 水結合材比は,粗骨材の種類によって普通骨材コンクリ ート(NWC)の場合 35%,軽量骨材コンクリート(LWC)の

ID.	骨材 種類	事前載荷 (×f _{cu})	目標温度 (℃)	評価項目			
NWC	花崗岩	0.0	20, 100,	 高温圧縮強度 熱助調びポカ 			
LWC	Clay-ash	0.2	200, 300, 500, 700	 * 熟販振びすみ ・ 全ひずみ 			

表-1 実験計画

表-2 コンクリートの調合

S/a

(%)

40

W

165

С

470

単位量 (kg/m³)

SF

S

692

G

1071

LWC	33	69	2		155	432	38	687	676
L#LVDT		上部加力	T)治具	,σ,ε T _{max} T _s *	T _a		T,σ,ε T _{max} T _s *	σ	
下部LVDT		下部加:	力治具		preload	σ t _{Tmax} t ₀	t	Image	t _{Tmax}
したフレーム			a)	翲膨	張ひる	すみ	b) 🗄	主ひす	<i>₽</i>
図—1	載荷力	□埶生	置	2	-2 1	いずみ	い言	方法	

A Proposal of Model Equation on High Temperature Mechanical Properties of Normal and Lightweight Aggregate Concrete with Pre-loading

正会員	〇尹毎	 敢浩*1	同	金	圭庸*2
同	崔士	景喆*1	同	金	弘燮*1
同	李亻	俌暻*1	同	李	睃 *1
会員外	俞石	在哲*2	正会員	金	武漢*2

場合は 33%に設定した。普通骨材は花崗岩砕石,軽量骨 材は Clay-ash 人工軽量骨材を用いた。

また,載荷条件がコンクリートの高温力学特性に及ぼ す影響を検討するために,高温圧縮強度,熱膨張ひずみ と全ひずみについて,非載荷,0.2f_{cu}及び0.4f_{cu}の3水準の 載荷条件を考慮して評価した。

2.2 実験方法

図-1にコンクリートの高温力学特性の評価のための載 荷加熱装置を示す。載荷と加熱が同時に行われるようにU niversal Testing Machine(UTM)に電気炉を設置し、1℃/min. の速度で加熱した。図-2に加熱・載荷時のコンクリートの ひずみ測定方法を示した。熱膨張ひずみと全ひずみはRIL EMで提案する方法に準じて測定した²⁾。

3. 実験結果及び考察

3.1 高温圧縮強度

図-3に載荷条件と粗骨材種類に伴う高温圧縮強度残存 比を示した。載荷条件によらず残存圧縮強度はLWCの方 がNWCより大きくなった。また、0.2f_{cu}及び0.4f_{cu}載荷によ り残存圧縮強度は上昇した。これは、高温時のコンクリ ート強度低下の原因として知られているInterfacial Transiti on Zone(ITZ)でのひび割れの発生が載荷によって抑制され たためと考えられる。しかし、0.4f_{cu}の載荷条件においてN WCの場合は、高温時の圧縮強度の低下が相対的に大きく なり、700℃では常温圧縮強度の約10%と低下した。

これらの結果から加熱温度と圧縮強度の関係を(1)式に 数式化して,ここに使用された実験定数を表-3に示す³⁾。

 $y = (a+b\times\theta+c\times\theta^2)\times exp(d\times\theta)$

 $\theta = (T-20)/100 \qquad \cdots \qquad (1)$

ここで, y: 温度T℃における圧縮強度残存比, a·b·c· d: 定数, T: 温度(℃)である。

表-3 圧縮強度残存率モデル式の定数

ID	載荷量	а	b	с	d
	非載荷	1.00	-0.44	0.84	-0.71
NWC	0.2f _{cu}	1.01	-0.45	0.71	-0.64
	0.4f _{cu}	1.01	-0.78	1.18	-0.77
	非載荷	0.99	0.12	0.27	-0.47
LWC	0.2f _{cu}	0.99	-0.07	0.27	-0.40
	0.4f _{cu}	0.99	0.09	0.21	-0.38

YOON Min-ho, KIM Gyu-yong, CHOE Gyoeng-cheol, KIM Hong-seop, LEE Bo-kyeong, LEE Jun, YOO Jae-chul, KIM Moo-han

表-4 コンクリートの熱ひずみモデル式

		載 荷 量				
	ID.	非載荷	$0.2 f_{cu}$	$0.4 f_{cu}$		
前	NWC	 ★ Kodur モデル式 0 ≤ T ≤ 450 °C ε = -0.0002+0.000011T 450 < T ≤ 650 °C ε = -0.0115+0.000036T 650 < T ≤ 700 °C ε = 0.0119 	• $0 \le T \le 450 \ C$ $\varepsilon = -0.0001 + 0.000006T$ • $450 < T \le 650 \ C$ $\varepsilon = 0.0039 - 0.000003T$ • $650 < T \le 700 \ C$ $\varepsilon = 0.0164 - 0.000022T$	• $0 \le T \le 450 \ C$ $\epsilon = -0.00001 + 0.000001 T$ • $450 < T \le 700 \ C$ $\epsilon = 0.0144 - 0.000032 T$		
च 1000	LWC	• $0 \le T \le 450 \ C$ $\varepsilon = -0.00014 + 0.000007T$ • $450 < T \le 650 \ C$ $\varepsilon = -0.0033 + 0.000014T$ • $650 < T \le 700 \ C$ $\varepsilon = 0.0058$	$\begin{array}{l} \bullet \ 0 \leq T \leq 450 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	• $0 \le T \le 450 \ C$ $\epsilon = 0.0001 \cdot 0.000003T$ • $450 < T \le 700 \ C$ $\epsilon = -0.0207 \cdot 0.000042T$		

非載荷の場合, CEBモデルと類似な傾向を示し, 0.2f_{cu} 及び0.4f_{cu}載荷の場合は非載荷条件であるCEBモデルより 大きい値を示した。

3.2 熱膨張ひずみ及び全ひずみ

図-4 に粗骨材の種類によるコンクリートの熱膨張ひず みと全ひずみを示す。非載荷の場合,NWC は加熱温度が 高くなるほど熱膨張ひずみが大幅に増加した。一方,粗 骨材の密度が小さい LWC は NWC より熱膨張ひずみが小 さかった。また,0.2f_{cu} 載荷の場合は載荷応力によって熱 膨張ひずみが抑制され最小のひずみが見られたが,相対 的に載荷応力が大きい 0.4f_{cu} 載荷の場合,500℃以後の高 温において急激に収縮ひずみが見られた。

既存研究ではコンクリートの耐火性能設計に使用する ために粗骨材種類による熱膨張ひずみをモデルとして提 示しているが,載荷による影響は考慮していない。従っ て,本実験結果と一致した Kodur のモデル式に基づいて 粗骨材種類と載荷量による熱ひずみについて回帰分析を 用いて数式化した結果を表-4 に示した。

4. まとめ

1) LWCがNWCより高温圧縮強度低下率及び熱膨張ひず みが小さかった。また、骨材種類によらず載荷量が増加 するほど高温圧縮強度が大きく,熱膨張ひずみは小さい ことを認められた。

2) 本研究の範囲では、0.4f_{cu}載荷条件において、500℃ 以後から急激に収縮ひずみが見られた。特に、NWCの場 合は高温圧縮強度低下率が大きいことが分かった。

3) 本研究では、耐火性能設計に関する既往のモデル式 と異なり、粗骨材種類及び実構造物の載荷条件を考慮し たコンクリートの高温圧縮強度、熱ひずみについてモデ ル式を提案した。

謝辞

本論文は教育科学技術部と韓国研究財団の地域革新人 力養成事業(2012H1B8A2025606)の支援を受けて遂行され た研究である。

参考文献

1) Charles G Culver and Robert A Crist, Fire Performance of Military Record Center, ACI Journal, 1975.4

2) RILEM TC 129-MHT, "Test Method for Mechanical Properties of Concrete at High Temperatures : Part 6 – Thermal Strain", Materials and Structures, 1997, pp. 17~21

 Ave T., Ohtsuka T., Kobayashi Y., Michikoshi S., Mechanical Properties of Moderate Strength Concrete at High Temperatures, J. Struct. Constr. Eng., AIJ, No. 615, 7~13, May, 2007

*1 大韓民国 忠南大学校 建築工学科 大学院生 *2 大韓民国 忠南大学校 建築工学科 教授・工博 *1 Graduate Student, Dept. of Arch. Eng., Chungnam National Univ., Korea *2 Professor, Dept. of Arch. Eng., Chungnam National Univ., Korea